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FOURIER SERIES OF FUNCTIONS RELATED TO BERNOULLI
POLYNOMIALS

GWAN-WOO JANG, DAE SAN KIM, TAEKYUN KIM, AND TOUFIK MANSOUR

ABSTRACT. We study the Fourier series of functions related to Bernoulli polynomials. As con-
sequences, several new identities for the Bernoulli functions and numbers are derived.

1. INTRODUCTION

We know that Bernoulli numbers and polynomials appear everywhere in mathematics (for example,
see [1,3,9-13]). The Bernoulli numbers have been defined by the generating function e,il =
> m>0 Bm%‘ The Bernoulli polynomials By,(x) have been given by the generating function

t
et — 1€xt - Z B (x)

m>0

tT",

ml’

for any real number z, namely z € R. For instance, By (z) = x — 1/2, Ba(x) = 22 —  — 1/6 and
Bs(z) = 2% — 32%/2 + x/2. For u € R, we denote the fractional part of u by (u) = u — |u] € [0, 1).
In this paper, we interested in three functions related to Bernoulli polynomials:

am(@) = 3 Bil@)a™ ", (@) = (@),
k=0

Bnle) = 3 g Bl Bn(2) = Bm((2)),
k=0
m—1

) = 3 gy B, Son(2) = (@),
k=1

with m > 1, for au,(x), Bm(x), and with m > 2, for ~,,(z) . We recall the following facts about
Bernoulli functions:

( ) | i 627Tin:1: ~ ( )
1 —m: o \m Bm Z), m 2 2,
e (2min)
o Ly e (B, ed
ni= om0 2min 0, z € 7.

where B,,(z) = B,,((x)).
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The Fourier series of a periodic function f(z) with period 1 is given by Y oo f,e*™"® where

the coefficients f, are given by f, = fol f(z)e=?™m2dy (for example, see [2,4,9,14-16]), where
i?=-1.

The aim of this paper is to consider the Fourier series of diy (), Bm(2) and F,,(x), which lead to
several new identities for the Bernoulli functions and numbers.

2. THE FUNCTION ¢,

In this section, we consider the function ., on R, which is periodic with period 1. The Fourier

series of &, is an o Agl )627””‘)“, where

1 1
Alm) :/ (ym(<x>)6_2”mdw=/ (@)™ 2T 2 g,
0 0

To proceed further, we note the following lemma.

Lemma 1. For allm > 1, La,,(z) = (m+ 1)ay,_1(z).

Proof. By the definitions,

m

Oém Z kBk, 1 me k—l—(mfk)Bk( ) m—k— 1)
0

3 W

((k+ 1)Bi(z)a™ % 4 (m — k) By (x)a™ ')

bl
Il
<)

m—1
=(m+1) ZBk 2™ R = (4 Vg1 (),
k=0

as claimed. 0

By Lemma 1, we have fol am(z)de = (@) |77 LM On the other hand

m—+2 2=0 m
3) (1) = an(®) = 3 Be— (Bu—1) =1+ Y By,
= k=0

Thus,

.1 1 m
(4) ‘/0 o (z)de = pro (1 + ,;Bk> .
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Now, we are ready to determine the Fourier coefficients A(m) First, let us consider the case n # 0.
By Lemma 1 and (3), we obtain

r=1
z=0

1 1
; 1 d ) 1 )
Aglm) — / U (x)e—21rm,rd$ — / O (m)e—anzd:C - — (l.)e—2mnz ‘
0 0

2min dx 2min

1! ;
= + / 1 (z)e™ 2" dy
0

2min

(o (1) — am(0))

m—1

m+1
— A(anl) B
2min = " 27rm 1+ Z k

Hence, by induction on m, we obtain
m—1

(5) A = 7(87;1)1;“_‘5 AP -3 <"Z;fn)] : (1 + Z Bk>

where (z); = 1’(:13 — 1) -+ (x —741) with ()9 = 1. On the other hand, by the definitions, we have
that AL = fo ap(z)e 2mnedy = f01(21' —1/2)e=?mn2dy = —L which, by (5), implies

m 2(m 1 m—1 =
Am) _% _ Zl m+ D (2mn)7 <1+ s Bk>

Therefore,

m

+2),
A = (m 1 B
(6) m+ 2 Z 271'711)3 * Z F

Jj=1

The case n = 0 follows immediately from (4):
m _ [ 1 -
(7) Al =/0 () = —— 1+]§Bk .

Note that the function &,,, m > 1, is piecewise C°°. Moreover, the function &, is continuous for
e . —1 . . s . o

those positive integers m with ZZ’:O By = —1, and discontinuous with jump discontinuities at

. e . -1

integers for those positive integers m with >, By # —1.

2.1. Case Y} ' By = —1. Assume first that m is a positive integer with 37" By = —1. Then
am (1) = a,,(0). So, the function &, is piecewise C*° and continuous. Thus, the Fourier series of
Gy, converges uniformly to &,,. So, by (6) an (7), we have

oo

} 1 m m+2) m—j
m@)=——=1{1 B 71 B 2minx
- (e En) £ (RS (e e)) o

n=-—o00,n#0
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which, by (1) and (2), implies

1 - 1
k=0

m—j o0 ¥j|€27rinx
1 B —_
2B X Ly
k=0 n=—oo0,n#0
1 “ 1 m+ 2 o -
- l-i-ZBk)-l—— ( . ><<1+ k)Bj({L’))
m+2 ( k=0 m+27‘=2 J k=0
m—1 ~
. Bl (‘/L)> &€ g Z7
M COEIRFC
k=0
which, by >3 ' B, = —1, implies

el ) ()
:mLH i (m;—2> <1+I§)Bk>1§j(a¢)

§=0,j#1

S

for all € R. Thus, we can state the following result.

Theorem 2. Let m be a positive integer with Z?:_ol By = —1. Then the function an,(z) =
oo Br(x)(x)™* has the Fourier series expansion

1 " > 2 (m+2); =y
O )=——|1 By, B 2mine
G () mr2 ( + E k> + E m+ 5 E 2mn ( + E k> e R
k=0 n=-—o0,n#0 j=1 k=0

for all x € R, where the convergence is uniform. Moreover,

- m+ 2 md .
am () = 2 1+ Z By | Bj(z),
m+ 0541 =0

for all z € R.

2.2. Case Y.} ' By # —1. Assume first that m is a positive integer with 37" "' By # —1. Then

am (1) # ., (0). So, the function &, is pointwise C*° and discontinuous with jump discontinuities
at integers. Thus, the Fourier series of &,,(x) converges piecewise to &, (z) for all x ¢ Z, and
converges to

am(1) + am(0) _ ~ .
f— l—l-ZBk , for all x € Z.

Then, by Theorem 2, we obtain the following result.
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Theorem 3. Let m be a positive integer with Z!ol By # —1. Then

1 i > (m+2), sy
1 B 1 B, 2minx
m+2< +Z k>+ Z m+2 (2min)J ( +Z k) €
k=0 n=—o00,n#0 k=0

B am(ac)7 x &7,
T\ B+ (140D By, wen

Moreover,

1 m+2 mJ .
m+ 2 0( ) <1+ZBk>B x) = ap(x), for allx ¢ Z,

and
1 i m—+2 mJ . 1 m-1
— 1+ Y B Bi@) =Bt 5 (14 Y B, z
m+2vzl< j >< +Z k) () +2< +l; k) for all x €

Theorems 2 and 3 suggest the following question: For what values of integers m > 1 does
Sy B = —1 hold?
We end this section by noting that the integral fol am(x )dm =30 fo By (z)2™ *dx has been

obtained previously in [5-7] by determining I, , = fo x)xldx, with p,q > 0 In fact, we can
show that

)J ! (m k+1)Bk+J

/oa’”( o= gg (m—k+1) (%)

which leads to following corollary.

Corollary 4. For all m > 1,

m—1m—k (*1)]—1(” k+1)Bk+7
NL+2< +Z ) m+1+ZZ (m—k+ )(k—H) .

k=1 j=1

3. THE FUCNTION f,,

In this section, we consider the function E‘m on R, which is periodic with period 1. The Fourier

series of fyn(z) is Y200 B{™e2minT ywhere

o1 1
Br(zm) — / 57,L(<£L'>)6_2ﬂmwd£l: _ / Bm(w)E_QMNZdZL'.
JOo JO

To proceed further, we note first the following lemma.

Lemma 5. For all m > 1, %[)’m(a:) =28m_1(x).

53
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Proof. By the definitions, we have

m
m

d k' m— k m—k—1
E’gm(m)zz<k!(m_k)!3k*1(x)m k+k!(m—k) By(w)a™ " )

k=0
m 1 m—1 1
= —B _ m—k B. m—1—k
D T D B @ Y e B
k=1 k=0
m—1 1
=20 T @ = 260 @),
k=0 :
as claimed. O
r=1
By Lemma 5, we have that fol B ( ) dx = —ﬁ'”gl(“"’) = —ﬁ'”“(l)gﬁ"‘“(o). On the other hand,
,3m(1) - 6771(0) = ﬁ + ZZL 01 m Thus,
1(1 " B
8 3 (2)de = = | — B} .
®) [ nteta 2<m+§%mm4-w>

Now, we are ready to determine the Fourier coefficients Bém). First, let us consider the case n # 0.
By Lemma 5 and (8) we have

(m) —27inx 1 . d —2minx
B{m = 5 (x)e dx . —Bm(w)e dz —
0

~ 2rin Jo dz

_ 1
Bm( ) 27rmz|j -

27r1n
1
=i— [ usta)e i - L (8,0(1) = um(0))

Tin 2min
1 1 ' B

= _B(m—l) R I __k )

win " 2min ((m—m!+ kZ:O W(m — )]

Hence, by induction on m, we obtain
1 i 1 s B
Bm = ___—___p_ . K .

" (rin)m—1"" ; (2min)i \ (m — j)! + Z El(m—j—k+1)!

On the other hand, BYY = fo 1(z)e 272 dy = fo 20 — 1/2)e 2™y = =L So,

TLTL

m—1 i m—j
ORI Sl (R S |
" (win)™ = (2min)? \ (m—j)t = &= kl(m—j - k+1)! ’
which is equivalent to
m -7 m—j
1 By
9 B{m™ = .
©) " g 27Tm)3 < —j)!+kzzok'!(m—j—k+1)!>

The case n = 0 follows immediately from (8):

(10) B = / Bon()d = = < Z T — ol )
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Let Q,, = (m11)' + 3 01 m, for all m > 1. Note that B, (z), m > 1, is piecewise C*°.
Moreover, f3,,(x) is continuous for those positive integers m with Q,, = 0, and discontinuous with

jump discontinuities at integers for those positive integers m with € # 0.

3.1. Case Q,, = 0. Assume first that m is a positive integer with Q,, = 0. Then 3,,(1) = 3,,(0).
So, the function 3, (z) is piecewise C'*° and continuous. Thus, the Fourier series of 3,,,(2) converges
uniformly to f3,,(x). So, by (9) an (10), we have

- 1(1 i By
Bm(z) = 2 (ﬁ + kz::O El(m+1-— k)')
oo m 2]-71 1 m—j Bk i
- Zl(men)j ((m—j)!+1§k!(m—j—k+1)!> c

n=—oo,n#0 \ j=

which implies

- 11 & By,
Bm() = 2 (% * ;;o El(m+1-— k)')
M 9j-1 1 m—j B o0 _j!e27rinx
+j; 4! ((m — ) + ;} Kl(m—j—k+1)! Z (2min)J

n=—o0,n#0

1 m ™ 9j-1 m_J .
‘5<— Zm) Z?(( 2 Jm))BJ(”)

j=2
B ), x€&Z,
0, rEL
1 ’” " 9i—1 1 sy By, .
_§<m' m+1—k)'>+j§2 i <<(m—j)!+;k!(m—j—k+1)!> j($)>
= Qm 7+1B( )s
j= 007&1 :

for all x € R. Thus, we can state the following result.
Theorem 6. Let m be a positive integer with Q,, = 0. Then the function ,’;’m(/ )= Zk o k,ﬁ’; L})C), (x)ym—F
has the Fourier series expansion

o m 2j_1

- 1 )
3m = _Qm — %Qm—' 2mnx’
P (@) = 50m1 > (X @iy mitL | €

n=—oo,n#0 \j=1

for all x € R, where the convergence is uniform. Moreover,

- mo 9j-1
/jrn(x) = Z an 7+1B ( )
Py R

for all z € R.
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3.2. Case (), # 0. Assume first that m is a positive integer with €, # 0. Then 3,,(1) # 3 (0).
So, the function f§,,(z) is plecew1se C*° and discontinuous with jump discontinuities at integers.
Thus, the Fourier series of 3,,(2) converges pointwise to 3, (z) for all # & Z, and converges to

Bm(1) + Bm(0) _
2
Then, by Theorem 6, we obtain the following result.

Bm(0) + §Qm’ for all z € Z.

Theorem 7. Let m be a positive integer with Q,, # 0. Then we have the following.

! S o[ Bple)  egZ
e} _ Q. 2mwinx — m 3
2 e nffznfo Jz—; (2‘”—2”)] m ‘ { 'm‘B + Qm7 x e Z’

where the convergence is pointwise. Moreover,

m 9j-1 - -
E Tﬂm—j—FlBj (ZE) = 5m($)~ fO’f‘ all x ¢ Z;

=0
and
n9i- - 1 1
Z Tﬂm_j+1Bj($) = %Bm + §Qm’ for allz € Z.
j=0,j#1 ’ ’

Theorems 6 and 7 suggest the following question: For what values of integers m > 1, does Q,, =0
hold?

We end this section by noting that the integral fol B (2)dz =700, jo k,?m T])C),L7'L kdz has been

studied in [5-7] and showed that

1 1 m—1m—k ] m+1
Bm(x)dz = —1)yt ,>B. i
[ oo = i+ m+1'k=1 I LY

which, by (10), gives the following identity.
Corollary 8. For allm > 1,

m—1m—k m
1 m+1 1(1 By,
Brii==-|— P ——
(m+1)! erl'ZZ ( j) ktd 2<m!+20k!(m+l—k)!>

k=1 j=1 k=

4. THE FUNCTION 7,

In this section, we consider the function #,, on R, which is periodic with period 1. The Fourier
series of ,, () is S.o° (M) e2mine with

n=-—oo

1 1
C7(zm) — / ,%n(x)e—%rinzdl, — / ,ym(x)e—%rinzdx.
0 0
To proceed further, we note first the following lemma.

Lemma 9. For allm > 1, %ﬂ/m(x) = ml —(a™~ Y4 Bo1(2) + (m = Dy ().
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Proof. By the definitions, we have

m—1
d _ 1 m—k 1 m—k—1
dz'ym(x) = E <m — kBk,l(:c)z + kBk(.T)LL‘ )

k=1
m—2 1 m—1 1
_ B N,m—1—k - o N,m—1—k
e w(2)x + Z kBk(.L')ZL
k=0 k=1
1 m—1 = 1 m—1—k
= m(l + Bmfl(fll)) + (TTL - 1) Z m (.L)L
k=1
1 _
= m(wm T+ Bi—1(2)) + (m — Dym_1(2),
as claimed. O
1 m+1 =1 .
By Lemma 9, we have that [ ym(2)dz = 2 (vmt1(2) — T~ T Bmt1(2)) Ly which

1+6m,0

implies that fol Y (z)dT = %”H(l)_n/m:(o) mniD - On the other hand, we have v, (1) — 7 (0) =
-1 By
ml—l + Z;nzl k(mik) - Thus,

(11) /1 ()de = ~ [ —2 +zm: Bi
.07m$ R kzlk(m—i—lfk') '

Define Am = w5 + Y7, gy Om = iy Ymiet, for all m > 2. Clearly, Y (1) = m(0)

if and only if A,,, = 0. Now, we are ready to determine the Fourier coefficients Cy, (m),
First, let us consider the case n # 0. By Lemma 9 and (11), we have

r=1

1

d —2minx 1 —27i =
— Y dx — m TInT

/0 7z Ym(@)e T = 5 m(z)e oo

1
01(1171) — / ,ym(x)e—%rinxdm —
0

2min

_m-1 /0 1 ()€ e — L (4 (1) — 7 (0))

2min 2min

1 ' 1 _—2minx 1 ' 27
m— - d BT,L_ - Wlnzd .
* 2min(m — 1) /0 e v 2min(m — 1) /0 1(@)e .

One shows that, for all £ > 1,

0
/1,1 I { — ke o, n A0, { ~Opi1, n#0,
0

x€r e

1
ﬁ n=~0 =1 n=20
and
1 _ 0! n # 0
/ By(z)e™ 2™y = @min)®> ’
Jo 0, n =0.
Thus,
C(nL) C(m 1) 1 o 1 — 1 (7”‘ — 1)' )
27rm "  2min 2mwin(m — 1) 2min(m — 1) (2mxin)™-1
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Hence, by induction on m, we obtain

m— 2 m—2
1j-1
com = =D ooy Ay oS m=Di o
(min)m— 2¢ ; 27rm)3 mitl ; @rin)i(m—j) "t
2

Cm-I=
~ (2min)™ m—k’

k=1

On the other hand, by direct calculations, we have that

1

1 1 -1 )
Cr,?) — / ,\/,,2(:E)6727rinxdw — / (:L'2 _ §‘L) e~ 2minT .
0 0

= 4min -~ (2min)?’

Therefore,

m— 1 m—1
(m—1 m—1);_ m — 1)!
cm = - % (m—Djry I ((_—)J{@m_jﬂ Dty

= (2min)J = 2min) (m — j) (2min)™

where H,, = z;n 1 7 is the m-th harmonic number. Before we proceeding further, we note that
m—1 m—
(

~ _(m=1);1 m—1); 1 { (m = ks
g 2min)i(m — ])Om i+ = Z (2min)i (m — j) ; (2min)k

7j=1

- - m s—1

_ (m—1)j1p_2 (m—1)s_2 1
B Z (2min)i+k(m — j) ; (2min)s ; m—j

j=1 k=1
_ 1 i 7”).5 m—1 — Hm. E]
T m ~ (2min)® —s+1 7
and
m—l m—1 m—j
(m — 1)3‘,1
m j+1 = - - | S —
Jz::l 27rm J J§=:1 (2min)i m—j kz k(m—j — k+ 1)
_ e (m—1);_1By + 'i (m—1);_1
- it 2min)ik(m—j—k+1 (2min)i (m — j)
_ i'm—l m—j (TTl)jBk i z_:
m i = (2min)ik(m —j—k+1 m = (27Tm)3 m—j)
m—1m—1 m—1
— i "L) By, s+1 Z TrL)g
m (2min)s(k — s+ 1)(m — m (2min)s(m — s)

s=1

>~

=5 s=1

@
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Hence, the coefficients C1(Lm) are given by

m

1 (m)s Hp—1— Hp,o (m —1)!
(m) = s m—s H
Ca m; (2min)*  m—s+1 @mriny™ "
1 mX:ImX:I )sBr—s+1 1 mz_:l (m)s
m = = (2min) (k —s+1)(m—Fk) m gt (2min)s(m — s)
(12)

m—1 m—1
1 H,_1—H,_s 1 By_syi1 (m)s 2(m —1)!
- _ — H,,_1.
m;{ m—s+1 +m—s+;(€—$+1)(m—€) (2win)s  (2win)m ™ !

The case n = 0 follows immediately from (11):

1 m
(m) , _1f_ B\ _ 1 __ L
(13) Gy /O'7m($)dw_m<m+1+;k(m+1—k))_m At = ST )

Note that 4, (z), m > 2, is piecewise C°°. Moreover, ¥, () is continuous for those positive integers
m with A, = 0, and discontinuous with jump discontinuities at integers for those positive integers
m with A, # 0.

4.1. Case A,, = 0. Assume first that m is an integer > 2 with A,,, = 0. Then ~,,(1) = v,,(0). So,
the function 4,,(z) is piecewise C*° and continuous. Thus, the Fourier series of 4,,(z) converges
uniformly to 4,,(z). By (12) and (13), we have

,:l, (m) — i ; + in: L + i C(m)621r1‘.n.r
" m\m+1 k(m+1—k) n ’
k=1 n=—o00,n#0
where Cﬁm) are given in (12). This implies

Tom () = <m—+—1+2k(m+1—k)>

k=1

. 1 m—1 m H,, | — + 'mzl Bi_gi1 N 1 i _gle2min
m = \J m— s+ 1 l—s+1)(m—40) m-—s (2min)s

=s n=-—o00,n#0

—m)
H. m: 2minx
m—1 g €
(2min)™

n=-—o00,n#0
1 1 m Bk
_E<m+1+;k(m+1—k))
1 — m Hm 1— m s Bl s+1 1 >
— B
+ms=2(s) m—s+1 +Z (L—s+1)(m-— €)+ m—s ()
2

Bl(:['.)v x ¢Z7
0, x € L.

m

H’In—l‘é’ln(x) + A'm {

Thus, we can state the following result.
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Theorem 10. Let m > 2 be a positive integer with A,, = 0. Then the function v, (z) =

m—1 By(z) m—k . . .
> ket T (z) has the Fourier series expansion

1 By > )
(m) 2mwinx
Fm() = (m—l—l ka—l—l—k)) E Gie ’

n=-—o00,n#0

where CS™ are given in (12), for all x € R, and the convergence is uniform. Moreover,

. 1 1 - By,
Fom () = m (m—i— 1 + k§=:1 k(m+1-— k‘))

m—1 m—1
1 m—1 — Hm—s Bé—s+1 1 ~ 2 >
- B(z —Hp—1Bm(z),
mz( )( n—s+1 +Z(€fs+l)(mff)+mfs (‘L)+’NL 1B (%)

s=2 l=s

for all z € R.

4.2. Case A,, # 0. Assume first that m is a positive integer with A,, # 0. Then v,,,(1) # m(0).
So, the function 4,,(x) is piecewise C*° and discontinuous with jump discontinuities at integers.
Thus, the Fourier series of 4,,(z) converges pointwise to 4,,(z) for all ¢ Z, and converges to

Ym (1) + 7m (0)
2

Then, by Theorem 10, we obtain the following result.

1 1
=vm(0) + §Am = §Am, forallz € Z

Theorem 11. Let m > 2 be a positive integer with A,, # 0. Then
L 3 ne _ [ Am(@), z¢Z
N C(m) 2mine _ m 5 P
m<m+1+ k(m+1—k)>+ Z no ¢ %Am, x €7,
k=1 n=—o0,n#0

where C’,(Lm) are given in (12), and the convergence is pointwise. Moreover,

e Eerti)

1 H,, i By gi1 1 N
B.(z
+m (s)( m—s—l—l +; l—s+1)(m—4 )+m—s (z)

s=1

2 ~
+ _Hmlem(x) = :/m(x)7 fOT all x g Z>
m

and

m—s+1 (l—s+1)(m—0) m-—s

k
> Hm—l _Hm—s i B[—s+1 1 )
l=s

1Am, for all x € Z.
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Theorems 10 and 11 suggest the following question: For what values of integers m > 2, does
Ay, = 0 hold?

We end this section by noting that the integral fol Ym ()dz = Zz:ll 01 k}(gn,; (_z,)c)xm_kdx has been
studied in [5-7] and showed that

1 m—1m—~€ (__1\j—1(m+1 ‘
/’Ym(l‘)dl‘=—z (17715 Besg

1
0 m(m? —1) & o ) ,

which, by (11), gives the following identity.

Corollary 12. For all m > 2,

1 S YT () By 1 . i By
2 —2 -
m(m? — 1) = = iy m \m+1 kzlk(m—i-l—k)
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